
/

Docs » Documenta�on for Users » Outline » The Double Entry Coun�ng Method

The Double-Entry Counting Method

Mar�n Blais, December 2016

h�p://furius.ca/beancount/doc/double-entry

Introduc�on

Basics of Double-Entry Bookkeeping

Statements

Single-Entry Bookkeeping

Double-Entry Bookkeeping

Many Accounts

Mul�ple Pos�ngs

Types of Accounts

Trial Balance

Income Statement

Clearing Income

Equity

Balance Sheet

Summarizing

Period Repor�ng

Chart of Accounts

Country-Ins�tu�on Conven�on

https://beancount.github.io/docs/
http://furius.ca/beancount/doc/double-entry

/

Credits & Debits

Accoun�ng Equa�ons

Plain-Text Accoun�ng

The Table Perspec�ve

Introduction

This document is a gentle introduc�on to the double-entry coun�ng method, as wri�en from
the perspec�ve of a computer scien�st. It is an a�empt to explain basic bookkeeping using as
simple an approach as possible, doing away with some of the idiosyncrasies normally
involved in accoun�ng. It is also representa�ve of how Beancount works, and it should be
useful to all users of plain-text accoun�ng.

Note that I am not an accountant, and in the process of wri�ng this document I may have
used terminology that is slightly different or unusual to that which is taught in perhaps more
tradi�onal training in accoun�ng. I granted myself license to create something new and
perhaps even unusual in order to explain those ideas as simply and clearly as possible to
someone unfamiliar with them.

I believe that the method of double-entry coun�ng should be taught to everyone at the high
school level everywhere as it is a tremendously useful organiza�onal skill, and I hope that this
text can help spread its knowledge beyond professional circles.

Basics of Double-Entry Bookkeeping

The double-entry system is just a simple method of coun�ng, with some simple rules.

Let’s begin by defining the no�on of an account. An account is something that can contain
things, like a bag. It is used to count things, to accumulate things. Let’s draw a horizontal
arrow to visually represent the evolving contents of an account over �me:

On the le�, we have the past, and to the right, increasing �me: the present, the future, etc.

For now, let’s assume that accounts can contain only one kind of thing, for example, dollars.
All accounts begin with an empty content of zero dollars. We will call the number of units in
the account the balance of an account. Note that it represents its contents at a par�cular
point in �me. I will draw the balance using a number above the account’s �meline:

http://furius.ca/beancount/
http://plaintextaccounting.org/

/

The contents of accounts can change over �me. In order to change the content of an
account, we have to add something to it. We will call this addi�on a pos�ng to an account,
and I will draw this change as a circled number on the account’s �meline, for example, adding
$100 to the account:

Now, we can draw the updated balance of the account a�er the pos�ng with another li�le
number right a�er it:

The account’s balance, a�er adding $100, is now $100.

We can also remove from the contents of an account. For example, we could remove $25,
and the resul�ng account balance is now $75:

Account balances can also become nega�ve, if we remove more dollars than there are in the
account. For example, if we remove $200 from this account, the balance now becomes
$-125:

It’s perfectly fine for accounts to contain a nega�ve balance number. Remember that all we’re
doing is coun�ng things. As we will see shortly, some accounts will remain with a nega�ve
balance for most of their �meline.

Statements

/

Something worthy of no�ce is how the �meline nota�on I’ve wri�en in the previous sec�on
is analogous to paper account statements ins�tu�ons maintain for each client and which you
typically receive through the mail:

Date Descrip�on Amount Balance

2016-10-02 ... 100.00 1100.00

2016-10-05 ... -25.00 1075.00

2016-10-06 ... -200.00 875.00

Final Balance 875.00

Some�mes the amount column is split into two, one showing the posi�ve amounts and the
other the nega�ve ones:

Date Descrip�on Debit Credit Balance

2016-10-02 ... 100.00 1100.00

2016-10-05 ... 25.00 1075.00

2016-10-06 ... 200.00 875.00

Final Balance 875.00

Here, “debit” means “removed from your account” and “credit” means “deposited in your
account.” Some�mes the words “withdrawals” and “deposits” will be used. It all depends on
context: for checking and savings accounts it is usual to have both types of pos�ngs, but for a
credit card account typically it shows only posi�ve numbers and then the occasional monthly
payment so the single column format is used.

In any case, the “balance” column always shows the resul�ng balance a�er the amount has
been posted to the account. And some�mes the statements are rendered in decreasing order
of �me.

Single-Entry Bookkeeping

In this story, this account belongs to someone. We’ll call this person the owner of the
account. The account can be used to represent a real world account, for example, imagine
that we use it to represent the content of the owner’s checking account at a bank. So we’re
going to label the account by giving it a name, in this case “Checking”:

/

Imagine that at some point, this account has a balance of $1000, like I’ve drawn on the
picture. Now, if the owner spends $79 of this account, we would represent it like this:

Furthermore, if the expense was for a meal at a restaurant, we could flag the pos�ng with a
category to indicate what the change was used for. Let’s say, “Restaurant”, like this:

Now, if we have a lot of these, we could write a computer program to accumulate all the
changes for each category and calculate the sums for each of them. That would tell us how
much we spent in restaurants in total, for example. This is called the single-entry method of
accoun�ng.

But we’re not going to do it this way; we have a be�er way. Bear with me for a few more
sec�ons.

Double-Entry Bookkeeping

An owner may have mul�ple accounts. I will represent this by drawing many similar account
�melines on the same graphic. As before, these are labeled with unique names. Let’s assume
that the owner has the same “Checking” account as previously, but now also a “Restaurant”
account as well, which can be used to accumulate all food expenses at restaurants. It looks
like this:

/

Now, instead of categorizing the pos�ng to a “restaurant category” as we did previously, we
could create a matching pos�ng on the “Restaurant” account to record how much we spent
for food, with the amount spent ($79):

The “Restaurant” account, like all other accounts, also has an accumulated balance, so we can
find out how much we spent in “Restaurant” in total. This is en�rely symmetrical to coun�ng
changes in a checking account.

Now, we can associate the two pos�ngs together, by crea�ng a kind of “parent” box that
refers to both of them. We will call this object a transac�on:

No�ce here that we’ve also associated a descrip�on to this transac�on: “Dinner at Uncle
Boons”. A transac�on also has a date, and all of its pos�ngs are recorded to occur on that
date. We call this the transac�on date.

We can now introduce the fundamental rule of double-entry bookkeeping system:

The sum of all the postings of a transaction must equal zero.

Remember this, as this is the founda�on of the double-entry method, and its most important
characteris�c. It has important consequences which I will discuss later in this document.

/

In our example, we remove $79 from the “Checking” account and “give it” to the “Restaurant”
account. ($79) + ($-79) = $0. To emphasize this, I could draw a li�le summa�on line under the
pos�ngs of the transac�on, like this:

Many Accounts

There may be many such transac�ons, over many different accounts. For example, if the
owner of the accounts had a lunch the next day which she paid using a credit card, it could
be represented by crea�ng a “Credit Card” account dedicated to tracking the real world credit
card balance, and with a corresponding transac�on:

In this example, the owner spent $35 at a restaurant called “Eataly.” The previous balance of
the owner’s credit card was $-450; a�er the expense, the new balance is $-485.

For each real world account, the owner can create a bookkeeping account like we did. Also,
for each category of expenditure, the owner also creates a bookkeeping account. In this
system, there are no limits to how many accounts can be created.

/

Note that the balance in the example is a nega�ve number; this is not an error. Balances for
credit card accounts are normally nega�ve: they represent an amount you owe, that the bank
is lending you on credit. When your credit card company keeps track of your expenses, they
write out your statement from their perspec�ve, as posi�ve numbers. For you, those are
amounts you need to eventually pay. But here, in our accoun�ng system, we’re represen�ng
numbers from the owner’s point-of-view, and from her perspec�ve, this is money she owes,
not something she has. What we have is a meal si�ng in our stomach (a posi�ve number of $
of “Restaurant”).

Multiple Postings

Finally, transac�ons may have more than two pos�ngs; in fact, they may have any number of
pos�ngs. The only thing that ma�ers is that the sum of their amounts is zero (from the rule of
double-entry bookkeeping above).

For example, let’s look at what would happen if the owner gets her salary paid for December:

Her gross salary received in this example is recorded as $-2,905 (I’ll explain the sign in a
moment). $905 is set aside for taxes. Her “net” salary of $2,000, the remainder, is deposited
in her “Checking” account and the resul�ng balance of that account is $2,921 (the previous
balance of $921 + $2,000 = $2,921). This transac�on has three pos�ngs: (+2,000) + (-2,905)
+ (+905) = 0. The double-entry rule is respected.

/

Now, you may ask: Why is her salary recorded as a nega�ve number? The reasoning here is
similar to that of the credit card above, though perhaps a bit more subtle. These accounts
exist to track all the amounts from the owner’s point-of-view. The owner gives out work, and
receives money and taxes in exchange for it (posi�ve amounts). The work given away is
denominated in dollar units. It “leaves” the owner (imagine that the owner has poten�al work
stored in her pocket and as she goes into work every day sprinkles that work poten�al giving
it to the company). The owner gave $2,905’s worth of work away. We want to track how
much work was given, and it’s done with the “Salary” account. That’s her gross salary.

Note also that we’ve simplified this paycheck transac�on a bit, for the sake of keeping things
simple. A more realis�c recording of one’s pay stub would have many more accounts; we
would separately account for state and federal tax amounts, as well as social security and
medicare payments, deduc�ons, insurance paid through work, and vaca�on �me accrued
during the period. But it wouldn’t be much more complicated: the owner would simply
translate all the amounts available from her pay stub into a single transac�on with more
pos�ngs. The structure remains similar.

Types of Accounts

Let’s now turn our a�en�on to the different types of accounts an owner can have.

Balance or Delta. First, the most important dis�nc�on between accounts is about whether
we care about the balance at a par�cular point in �me, or whether it only makes sense to
care about differences over a period of �me. For example, the balance of someone’s
Checking or Savings accounts is a meaningful number that both the owner and its
corresponding bank will care about. Similarly, the total amount owed on someone’s Credit
Card account is also meaningful. The same goes with someone’s remaining Mortgage amount
to pay on a house.

On the other hand, the total amount of Restaurant expenses since the beginning of
somebody’s life on earth is not par�cularly interes�ng. What we might care about for this
account is the amount of Restaurant expenses incurred over a par�cular period of �me. For
example, “how much did you spend in restaurants last month?” Or last quarter. Or last year.
Similarly, the total amount of gross salary since the beginning of someone’s employment at a
company a few years ago is not very important. But we would care about the total amount
earned during a tax year, that is, for that �me period, because it is used for repor�ng one’s
income to the tax man.

Accounts whose balance at a point in �me is meaningful are called balance sheet
accounts. There are two types of such accounts: “Assets” and “Liabili�es.”
The other accounts, that is, those whose balance is not par�cularly meaningful but for
which we are interested in calcula�ng changes over a period of �me are called income
statement accounts. Again, there are two kinds: “Income” and “Expenses.”

/

Normal sign. Secondly, we consider the usual sign of an account’s balance. The great majority
of accounts in the double-entry system tend to have a balance with always a posi�ve sign, or
always a nega�ve sign (though as we’ve seen previously, it is not impossible that an account’s
balance could change signs). This is how we will dis�nguish between the pairs of accounts
men�oned before:

For a balance sheet account, Assets normally have posi�ve balances, and Liabili�es
normally have nega�ve balances.
For income statement accounts, Expenses normally have a posi�ve balance, and Income
accounts normally have a nega�ve balance.

This situa�on is summarized in the following table:

Balance: Posi�ve (+) Balance: Nega�ve (-)

Balance ma�ers
at a point in �me

(Balance Sheet)

Assets Liabili�es

Change in balance ma�ers
over a period of �me

(Income Statement)

Expenses Income

Let’s discuss each type of account and provide some examples, so that it doesn’t remain too
abstract.

Assets. (+) Asset accounts represent something the owner has. A canonical example is
banking accounts. Another one is a “cash” account, which counts how much money is in
your wallet. Investments are also assets (their units aren’t dollars in this case, but rather
some number of shares of some mutual fund or stock). Finally, if you own a home, the
home itself is considered an asset (and its market value fluctuates over �me).
Liabili�es. (-) A liability account represents something the owner owes. The most common
example is a credit card. Again, the statement provided by your bank will show posi�ve
numbers, but from your own perspec�ve, they are nega�ve numbers. A loan is also a
liability account. For example, if you take out a mortgage on a home, this is money you
owe, and will be tracked by an account with a nega�ve amount. As you pay off the
mortgage every month the nega�ve number goes up, that is, its absolute value gets
smaller and smaller over �me (e.g., -120,000 -> -117,345).
Expenses. (+) An expense account represents something you’ve received, perhaps by
exchanging something else to purchase it. This type of account will seem pre�y natural:
food, drinks, clothing, rent, flights, hotels and most other categories of things you typically
spend your disposable income on. However, taxes are also typically tracked by an expense

/

account: when you receive some salary income, the amount of taxes withheld at the
source is recorded immediately as an expense. Think of it as paying for government
services you receive throughout the year.
Income. (-) An income account is used to count something you’ve given away in order to
receive something else (typically assets or expenses). For most people with jobs, that is
the value of their �me (a salary income). Specifically, here we’re talking about the gross
income. For example, if you’re earning a salary of $120,000/year, that number is
$120,000, not whatever amount remains a�er paying for taxes. Other types of income
includes dividends received from investments, or interest paid from bonds held. There are
also a number of oddball things received you might record as income, such the value of
rewards received, e.g., cash back from a credit card, or monetary gi�s from someone.

In Beancount, all account names, without excep�on, must be associated to one of the types
of accounts described previously. Since the type of an account never changes during its
life�me, we will make its type a part of an account’s name, as a prefix, by conven�on. For
example, the qualified account name for restaurant will be “Expenses:Restaurant”. For the
bank checking account, the qualified account name will be “Assets:Checking”.

Other than that, you can select any name you like for your accounts. You can create as many
accounts as you like, and as we will see later, you can organize them in a hierarchy. As of the
wri�ng of this document, I’m using more than 700 accounts to track my personal affairs.

Let us now revisit our example and add some more accounts:

And let’s imagine there are more transac�ons:

/

… and even more of them:

Finally, we can label each of those accounts with one of the four types of accounts by
prepending the type to their account names:

/

A realis�c book from someone tracking all of their personal affairs might easily contain
thousands of transac�ons per year. But the principles remain simple and they remain the
same: pos�ngs are applied to accounts over �me, and must be parented to a transac�on, and
within this transac�on the sum of all the pos�ngs is zero.

When you do bookkeeping for a set of accounts, you are essen�ally describing all the
pos�ngs that happen on all the accounts over �me, subject to the constraint of the rule. You
are crea�ng a database of those pos�ngs in a book. You are “keeping the book,” that is,
tradi�onally, the book which contains all those transac�ons. Some people call this
“maintaining a journal.”

We will now turn our a�en�on to obtaining useful informa�on from this data, summarizing
informa�on from the book.

Trial Balance

Take our last example: we can easily reorder all the accounts such that all the Asset accounts
appear together at the top, then all the Liabili�es accounts, then Income, and finally Expenses
accounts. We are simply changing the order without modifying the structure of transac�ons,
in order to group each type of accounts together:

We’ve reordered the accounts with Assets accounts grouped at the top, then Liabili�es, then
some Equity accounts (which we have just introduced, more about them is discussed later),
then Income and finally Expenses at the bo�om.

If we sum up the pos�ngs on all of the accounts and render just the account name and its
final balance on the right, we obtain a report we call the “trial balance.”

/

This simply reflects the balance of each account at a par�cular point in �me. And because
each of the accounts began with a zero balance, and each transac�on has itself a zero
balance, we know that the sum of all those balances must equal zero. This is a consequence
of our constraining that each of the pos�ngs be part of a transac�on, and that each
transac�on have pos�ngs that balance each other out.

Income Statement

One kind of common informa�on that is useful to extract from the list of transac�ons is a
summary of changes in income statement accounts during a par�cular period of �me. This
tells us how much money was earned and spent during this period, and the difference tells us
how much profit (or loss) was incurred. We call this the “net income.”

In order to generate this summary, we simply turn our a�en�on to the balances of the
accounts of types Income and Expenses, summing up just the transac�ons for a par�cular
period, and we draw the Income balances on the le�, and Expenses balances on the right:

1

/

It is important to take note of the signs here: Income numbers are nega�ve, and Expenses
numbers are posi�ve. So if you earned more than you spent (a good outcome), the final sum
of Income + Expenses balances will be a nega�ve number. Like any other income, a net
income that has a nega�ve number means that there is a corresponding amount of Assets
and/or Expenses with posi�ve numbers (this is good for you).

An Income Statement tells us what changed during a par�cular period of �me. Companies
typically report this informa�on quarterly to investors and perhaps the public (if they are a
publicly traded company) in order to share how much profit they were able to make.
Individuals typically report this informa�on on their annual tax returns.

Clearing Income

No�ce how in the income statement only the transac�ons within a par�cular interval of �me
are summed up. This allows one, for instance, to compute the sum of all income earned
during a year. If we were to sum up all of the transac�ons of this account since its incep�on
we would obtain the total amount of income earned since the account was created.

A be�er way to achieve the same thing is to zero out the balances of the Income and
Expenses accounts. Beancount calls this basic transforma�on “clearing .” It is carried out by:

1. Compu�ng the balances of those accounts from the beginning of �me to the start of the
repor�ng period. For example, if you created your accounts in year 2000 and you wanted
to generate an income statement for year 2016, you would sum up the balances from
2000 to Jan 1, 2016.

2. Inser�ng transac�ons to empty those balances and transfer them to some other account
that isn’t Income nor Expenses. For instance, if the restaurant expense account for those
16 years amounts to $85,321 on Jan 1, 2016, it would insert a transac�on of $-85,321 to
restaurants and $+85,321 to “previous earnings”. The transac�ons would be dated Jan 1,
2016. Including this transac�on, the sum of that account would zero on that date. This is
what we want.

Those transac�ons inserted for all income statement accounts are pictured in green below.
Now summing the en�re set of transac�ons through the end of the ledger would yield only
the changes during year 2016 because the balances were zero on that date:

2

/

This is the seman�cs of the “CLEAR” opera�on of the bean-query shell.

(Note that another way to achieve the same thing for income statement accounts would be
to segregate and count amounts only for the transac�ons a�er the clearing date; however,
jointly repor�ng on income statement accounts and balance sheet accounts would have
incorrect balances for the balance sheet accounts.)

Equity

The account that receives those previously accumulated incomes is called “Previous
Earnings”. It lives in a fi�h and final type of accounts: Equity. We did not talk about this type
of accounts earlier because they are most o�en only used to transfer amounts to build up
reports, and the owner usually doesn’t post changes to those types of accounts; the so�ware
does that automa�cally, e.g., when clearing net income.

The account type “equity” is used for accounts that hold a summary of the net income
implied by all the past ac�vity. The point is that if we now list together the Assets, Liabili�es
and Equity accounts, because the Income and Expenses accounts have been zero’ed out, the
sum total of all these balances should equal exactly zero. And summing up all the Equity
accounts clearly tells us what’s our stake in the en�ty, in other words, if you used the assets
to pay off all the liabili�es, how much is le� in the business… how much it’s worth.

Note that the normal sign of the Equity accounts is nega�ve. There is no par�cular meaning
to that, just that they are used to counterbalance Assets and Liabili�es and if the owner has
any value, that number should be nega�ve. (A nega�ve Equity means some posi�ve net
worth.)

There are a few different Equity accounts in use in Beancount:

Previous Earnings or Retained Earnings. An account used to hold the sum total of Income
& Expenses balances from the beginning of �me un�l the beginning of a repor�ng period.
This is the account we were referring to in the previous sec�on.

/

Current Earnings, also called Net Income. An account used to contain the sum of Income
& Expenses balances incurred during the repor�ng period. They are filled in by “clearing”
the Income & Expenses accounts at the end of the repor�ng period.
Opening Balances. An equity account used to counterbalance deposits used to ini�alize
accounts. This type of account is used when we truncate the past history of transac�ons,
but we also need to ensure that an account’s balance begins its history with a par�cular
amount.

Once again: you don’t need to define nor use these accounts yourself, as these are created
for the purpose of summarizing transac�ons. Generally, the accounts are filled in by the
clearing process described above, or filled in by Pad direc�ves to “opening balances” equity
accounts, to account for summarized balances from the past. They are created and filled in
automa�cally by the so�ware. We’ll see how these get used in the following sec�ons.

Balance Sheet

Another kind of summary is a lis�ng of the owner’s assets and debts, for each of the
accounts. This answers the ques�on: “Where’s the money?” In theory, we could just restrict
our focus to the Assets and Liabili�es accounts and draw those up in a report:

However, in prac�ce, there is another closely related ques�on that comes up and which is
usually answered at the same �me: “Once all debts are paid off, how much are we le� with?”
This is called the net worth.

If the Income & Expenses accounts have been cleared to zero and all their balances have
been transferred to Equity accounts, the net worth should be equal to the sum of all the
Equity accounts. So in building up the Balance Sheet, it it customary to clear the net income
and then display the balances of the Equity accounts. The report looks like this:

/

Note that the balance sheet can be drawn for any point in �me, simply by trunca�ng the list of
transac�ons following a par�cular date. A balance sheet displays a snapshot of balances at
one date; an income statement displays the difference of those balances between two dates.

Summarizing

It is useful to summarize a history of past transac�ons into a single equivalent deposit. For
example, if we’re interested in transac�ons for year 2016 for an account which has a balance
of $450 on Jan 1, 2016, we can delete all the previous transac�ons and replace them with a
single one that deposits $450 on Dec 31, 2015 and that takes it from somewhere else.

That somewhere else will be the Equity account Opening Balances. First, we can do this for
all Assets and Liabili�es accounts (see transac�ons in blue):

Then we delete all the transac�ons that precede the opening date, to obtain a truncated list
of transac�ons:

/

This is a useful opera�on when we’re focused on the transac�ons for a par�cular interval of
�me.

(This is a bit of an implementa�on detail: these opera�ons are related to how Beancount is
designed. Instead of making all the repor�ng opera�ons with parameters, all of its repor�ng
rou�nes are simplified and instead operate on the en�re stream of transac�ons; in this way,
we convert the list of transac�ons to include only the data we want to report on. In this case,
summariza�on is just a transforma�on which accepts the full set of transac�ons and returns
an equivalent truncated stream. Then, from this stream, a journal can be produced that
excludes the transac�ons from the past.

From a program design perspec�ve, this is appealing because the only state of the program is
a stream of transac�ons, and it is never modified directly. It’s simple and robust.)

Period Reporting

Now we know we can produce a statement of changes over a period of �me, by “clearing”
and looking at just the Income & Expenses accounts (the Income Statement). We also know
we can clear to produce a snapshot of Assets, Liabili�es & Equity at any point in �me (the
Balance Sheet).

More generally, we’re interested in inspec�ng a par�cular period of �me. That implies an
income statement, but also two balance sheet statements: the balance sheet at the beginning
of the period, and the balance sheet at the end of the period.

In order to do this, we apply the following transforma�ons:

Open. We first clear net income at the beginning of the period, to move all previous
income balances to the Equity Previous Earnings account. We then summarize up to the
beginning of the period. We call the combina�on of clearing + summarizing: “Opening.”
Close. We also truncate all the transac�ons following the end of the repor�ng period. We
call this opera�on “Closing.”

These are the meaning of the “OPEN” and “CLOSE” opera�ons of the bean-query shell . The
resul�ng set of transac�ons should look like this.

“Closing” involves two steps. First, we remove all transac�ons following the closing date:

3

/

We can process this stream of transac�ons to produce an Income Statement for the period.

Then we clear again at the end date of the desired report, but this �me we clear the net
income to “Equity:Earnings:Current”:

From these transac�ons, we produce the Balance Sheet at the end of the period.

This sums up the opera�ons involved in preparing the streams of transac�ons to produce
reports with Beancount, as well as a basic introduc�on to those types of reports.

Chart of Accounts

New users are o�en wondering how much detail they should use in their account names. For
example, should one include the payee in the account name itself, such as in these examples?

Expenses:Phone:Mobile:VerizonWireless
Assets:AccountsReceivable:Clients:AcmeInc

/

Or should one use simpler names like the following, relying instead on the “payee”, “tags”, or
perhaps some other metadata in order to group the pos�ngs?

Expenses:Phone
Assets:AccountsReceivable

The answer is that it depends on you. This is an arbitrary choice to make. It’s a ma�er of taste.
Personally I like to abuse the account names a bit and create long descrip�ve ones, other
people prefer to keep them simple and use tags to group their pos�ngs. Some�mes one
doesn’t even need to filter subgroups of pos�ngs. There’s no right answer, it depends on
what you’d like to do.

One considera�on to keep in mind is that account names implicitly define a hierarchy. The “:”
separator is interpreted by some repor�ng code to create an in-memory tree and can allow
you to collapse a node’s children subaccounts and compute aggregates on the parent. Think
of this as an addi�onal way to group pos�ngs.

Country-Institution Convention

One conven�on I’ve come up with that works well for my assets, liabili�es and income
accounts is to root the tree with a code for the country the account lives in, followed by a
short string for the ins�tu�on it corresponds to. Underneath that, a unique name for the
par�cular account in that ins�tu�on. Like this:

<type> : <country> : <institution> : <account>

For example, a checking account could be chosen to be “ Assets:US:BofA:Checking ”, where
“BofA” stands for “Bank of America.” A credit card account could include the name of the
par�cular type of card as the account name, like “ Liabilities:US:Amex:Platinum ”, which can
be useful if you have mul�ple cards.

I’ve found it doesn’t make sense for me to use this scheme for expense accounts, since those
tend to represent generic categories. For those, it seems to make more sense to group them
by category, as in using “ Expenses:Food:Restaurant ” instead of just “ Expenses:Restaurant ”.

In any case, Beancount doesn’t enforce anything other than the root accounts; this is just a
sugges�on and this conven�on is not coded anywhere in the so�ware. You have great
freedom to experiment, and you can easily change all the names later by processing the text
file. See the Cookbook for more prac�cal guidance.

Credits & Debits

https://beancount.github.io/docs/command_line_accounting_cookbook.html

/

At this point, we haven’t discussed the concepts of “credits” and “debits.” This is on purpose:
Beancount largely does away with these concepts because it makes everything else simpler. I
believe that it is simpler to just learn that the signs of Income, Liabili�es and Equity accounts
are normally nega�ve and to treat all accounts the same way than to deal with the debits and
credits terminology and to treat different account categories differently. In any case, this
sec�on explains what these are.

As I have pointed out in previous sec�ons, we consider “Income”, “Liabili�es” and “Equity”
accounts to normally have a nega�ve balance. This may sound odd; a�er all, nobody thinks of
their gross salary as a nega�ve amount, and certainly your credit-card bill or mortgage loan
statements report posi�ve numbers. This is because in our double-entry accoun�ng system
we consider all accounts to be held from the perspec�ve of the owner of the account. We use
signs consistent from this perspec�ve, because it makes all opera�ons on account contents
straigh�orward: they’re all just simple addi�ons and all the accounts are treated the same.

In contrast, accountants tradi�onally keep all the balances of their accounts as posi�ve
numbers and then handle pos�ngs to those accounts differently depending on the account
type upon which they are applied. The sign to apply to each account is en�rely dictated by its
type: Assets and Expenses accounts are debit accounts and Liabili�es, Equity and Income
accounts are credit accounts and require a sign adjustment. Moreover, pos�ng a posi�ve
amount on an account is called “credi�ng” and removing from an account is called “debi�ng.”
See this external document, for example, which nearly makes my head explode. This way of
handling pos�ngs makes everything much more complicated than it needs to be.

The problem with this approach is that summing of amounts over the pos�ngs of a
transac�on is not a straigh�orward sum anymore. For example, let’s say you’re crea�ng a
new transac�on with pos�ngs to two Asset accounts, an Expenses account and an Income
account and the system tells you there is a $9.95 imbalance error somewhere. You’re staring
at the entry intently; which of the pos�ngs is too small? Or is one of the pos�ngs too large?
Also, maybe a new pos�ng needs to be added, but is it to a debit account or to a credit
account? The mental gymnas�cs required to do this are taxing. Some double-entry
accoun�ng so�ware tries to deal with this by crea�ng separate columns for debits and
credits and allowing the user enter an amount only in the column that corresponds to each
pos�ng account’s type. This helps visually, but why not just use signs instead?

Moreover, when you look at the accoun�ng equa�ons, you have to consider their signs as
well. This makes it awkward to do transforma�ons on them and make what is essen�ally a
simple summa�on over pos�ngs into a convoluted mess that is difficult to understand.

In plain-text accoun�ng, we would rather just do away with this inconvenient baggage. We
just use addi�ons everywhere and learn to keep in mind that Liabili�es, Equity and Income
accounts normally have a nega�ve balance. While this is unconven�onal, it’s much easier to
grok. And If there is a need to view a conven�onal report with posi�ve numbers only, we will
be able to trigger that in repor�ng code , inver�ng the signs just to render them in the
output.

4

http://www.accountingtools.com/debits-and-credits

/

Save yourself some pain: Flush your brain from the "debit" and "credit" terminology.

Accounting Equations

In light of the previous sec�ons, we can easily express the accoun�ng equa�ons in signed
terms. If,

A = the sum of all Assets pos�ngs
L = the sum of all Liabili�es pos�ngs
X = the sum of all Expenses pos�ngs
I = the sum of all Income pos�ngs
E = the sum of all Equity pos�ngs

We can say that:

A + L + E + X + I = 0

This follows from the fact that

sum(all postings) = 0

Which follows from the fact that each transac�on is guaranteed to sum up to zero (which is
enforced by Beancount):

for all transactions t, sum(postings of t) = 0

Moreover, the sum of pos�ngs from Income and Expenses is the Net Income (NI):

NI = X + I

If we adjust the equity to reflect the total Net Income effect by clearing the income to the
Equity retained earnings account, we get an updated Equity value (E’):

E’ = E + NI = E + X + I

And we have a simplified accoun�ng equa�on:

A + L + E’ = 0

If we were to adjust the signs for credits and debits (see previous sec�on) and have sums that
are all posi�ve number, this becomes the familiar accoun�ng equa�on:

/

Assets - Liabilities = Equity

As you can see, it’s much easier to just always add up the numbers.

Plain-Text Accounting

Ok, so now we understand the method and what it can do for us, at least in theory. The
purpose of a double-entry bookkeeping system is to allow you to replicate the transac�ons
that occur in various real world accounts into a single, unified system, in a common
representa�on, and to extract various views and reports from this data. Let us now turn our
a�en�on to how we record this data in prac�ce.

This document talks about Beancount, whose purpose is “double-entry bookkeeping using
text files.” Beancount implements a parser for a simple syntax that allows you to record
transac�ons and pos�ngs. The syntax for an example transac�on looks something like this:

2016-12-06 * "Biang!" "Dinner"
 Liabilities:CreditCard -47.23 USD
 Expenses:Restaurants

You write many of declara�ons like these in a file, and Beancount will read it and create the
corresponding data structures in memory.

Verifica�on. A�er parsing the transac�ons, Beancount also verifies the rule of the double-
entry method: it checks that the sum of the pos�ngs on all your transac�ons is zero. If you
make a mistake and record a transac�on with a non-zero balance, an error will be displayed.

Balance Asser�ons. Beancount allows you to replicate balances declared from external
accounts, for example, a balance wri�en on a monthly statement. It processes those and
checks that the balances resul�ng from your input transac�ons match those declared
balances. This helps you detect and find mistakes easily.

Plugins. Beancount allows you to build programs which can automate and/or process the
streams of transac�ons in your input files. You can build custom func�onality by wri�ng code
which directly processes the transac�on stream.

Querying & Repor�ng. It provides tools to then process this stream of transac�ons to
produce the kinds of reports we discussed earlier in this document.

There are a few more details, for example, Beancount allows you to track cost basis and make
currency conversions, but that’s the essence of it.

The Table Perspective

/

Almost always, ques�ons asked by users on the mailing-list about how to calculate or track
some value or other can be resolved easily simply by thinking of the data as a long list of
rows, some of which need to be filtered and aggregated. If you consider that all that we’re
doing in the end is deriving “sums” of these pos�ngs, and that the a�ributes of transac�ons
and pos�ngs are what allows us to filter subsets of pos�ngs, it always becomes very simple.
In almost all the cases, the answer is to find some way to disambiguate pos�ngs to select
them, e.g. by account name, by a�aching some tag, by using some metadata, etc. It can be
illumina�ng to consider how this data can be represented as a table.

Imagine that you have two tables: a table containing the fields of each Transac�on such as
date and descrip�on, and a table for the fields of each Pos�ng, such as account, amount and
currency, as well as a reference to its parent transac�on. The simplest way to represent the
data is to join those two tables, replica�ng values of the parent transac�on across each of the
pos�ngs.

For example, this Beancount input:

2016-12-04 * "Christmas gift"
 Liabilities:CreditCard -153.45 USD
 Expenses:Gifts

2016-12-06 * "Biang!" "Dinner"
 Liabilities:CreditCard -47.23 USD
 Expenses:Restaurants

2016-12-07 * "Pouring Ribbons" "Drinks with friends"
 Assets:Cash -25.00 USD
 Expenses:Tips 4.00 USD
 Expenses:Alcohol

could be rendered as a table like this:

No�ce how the values of Transac�on fields are replicated for each pos�ng. This is exactly like
a regular database join opera�on. The pos�ng fields begin at column “Account.” (Also note
that this example table is simplified; in prac�ce there are many more fields.)

Date Fl Payee Narra�on Account Num

2016-12-04 * Christmas gi� Liabili�es:CreditCard -15

2016-12-04 * Christmas gi� Expenses:Gi�s 153

2016-12-06 * Biang! Dinner Liabili�es:CreditCard -47

2016-12-06 * Biang! Dinner Expenses:Restaurants 47.

2016-12-07 * Pouring Ribbons Drinks with friends Assets:Cash -25

2016-12-07 * Pouring Ribbons Drinks with friends Expenses:Tips 4.0

2016-12-07 * Pouring Ribbons Drinks with friends Expenses:Alcohol 21.

/

If you had a joined table just like this you could filter it and sum up amounts for arbitrary
groups of pos�ngs. This is exactly what the bean-query tool allows you to do: You can run an
SQL query on the data equivalent to this in-memory table and list values like this:

SELECT date, payee, number WHERE account = "Liabilities:CreditCard";

Or sum up posi�ons like this:

SELECT account, sum(position) GROUP BY account;

This simple last command generates the trial balance report.

Note that the table representa�on does not inherently constrain the pos�ngs to sum to zero.
If your selec�on criteria for the rows (in the WHERE clause) always selects all the pos�ngs
for each of the matching transac�ons, you are ensured that the final sum of all the pos�ngs is
zero. If not, the sum may be anything else. Just something to keep in mind.

If you’re familiar with SQL databases, you might ask why Beancount doesn’t simply process
its data in order to fill up an exis�ng database system, so that the user could then use those
database’s tools. There are two main reasons for this:

Repor�ng Opera�ons. In order to generate income statements and balance sheets, the
list of transac�ons needs to be preprocessed using the clear, open and close opera�ons
described previously. These opera�ons are not trivial to implement in database queries
and are dependent on just the report and ideally don’t need to modify the input data.
We’d have to load up the pos�ng data into memory and then run some code. We’re
already doing that by parsing the input file; the database step would be superfluous.
Aggrega�ng Posi�ons. Though we haven’t discussed it in this document so far, the
contents of accounts may contain different types of commodi�es, as well as posi�ons
with an a�ached cost basis. The way that these posi�ons are aggregated together
requires the implementa�on of a custom data type because it obeys some rules about
how posi�ons are able to cancel each other out (see How Inventories Work for details). It
would be very difficult to build these opera�ons with an SQL database beyond the
context of using just a single currency and ignoring cost basis.

This is why Beancount provides a custom tool to directly process and query its data: It
provides its own implementa�on of an SQL client that lets you specify open and close dates
and leverages a custom “Inventory” data structure to create sums of the posi�ons of
pos�ngs. This tools supports columns of Beancount’s core types: Amount, Posi�on and
Inventory objects.

(In any case, if you’re not convinced, Beancount provides a tool to export its contents to a
regular SQL database system. Feel free to experiment with it if you like, knock yourself out.)

https://beancount.github.io/docs/how_inventories_work.html
https://bitbucket.org/blais/beancount/src/tip/bin/bean-sql

/

1. Please don’t pay a�en�on to the numbers in these large figures, they were randomly
generated and don’t reflect this. We’re just interested in showing the structure, in these
figures. ↩

2. Note that this is unrelated to the term “clearing transac�ons” which means
acknowledging or marking that some transac�ons have been eyeballed by the
bookkeeper and checked for correctness. ↩

3. Note that opera�ons have nothing to do with the Open and Close direc�ves Beancount
provides. ↩

4. This is not provided yet in Beancount, but would be trivial to implement. All we'd need to
do is invert the signs of balances from Liabili�es, Income and Equity accounts. It's on the
roadmap to provide this eventually. ↩

